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Morphisms, Hemimorphisms, and Baer 
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The relationship between CROCs (complete orthomodular lattices) and complete 
Baer *-semigroups is discussed using an explicit construction of the adjoint of 
a hemimorphism. Simple examples provide much insight into the structures 
involved. 

1. P R E L I M I N A R I E S  

A CROC is nothing else than a complete orthomodular lattice (Piron, 
1976). We call it a CROC as it is canonically relatively orthocomplemented, 
which means that each segment [0, a], that is, the set of elements between 
0 and a, is by itself a complete orthomodular lattice, where the orthocomple- 
mentation is defined by x r = x' ^ a. A hemimorphism from a CROC ~ / t o  
a CROC ~ is a map ~b from ~ to ~ which maps 0 to 0 and preserves 
the supremum: 

~)(Vi a i )  = v i ~ ( a i )  

According to the usual definitions, a hemimorphism which conserves the 
orthogonality relation is called a morphism. 

A complete Baer *-semigroup is a set S equipped with the following 
(Foulis, 1960; see also Pool, 1968): 

(i) An associative multiplication law with a (necessarily unique) 0 and I: 

( fg)h = f ( g h ) ,  

Of = fO = O V f  E S 

I f  = f I  = f 'q f  e S 
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(ii) An involut ionf  ~ f*:  

f**  = f 

(fg)* = g ' f*  

in such a way that: 
(iii) Each annihilator {fl fg = 0 Vg ~ M C S} is an ideal of the form 

Sp, where p is a projection, that is, an element of S such that 

p = p ,  = p2 

One can easily show that 0 and I are projections and that the annihilator of 
0 is generated by I and that of I by 0. 

The aim of the next two sections is to show that these two structures 
are intimately linked. Finally we consider an instructive example in Section 4. 

2. T H E  C O M P L E T E  B A E R  * - S E M I G R O U P  A S S O C I A T E D  T O  
A CROC 

Let ~b: ~ --> ~ and ~: ~ --> ~ he hemimorphisms. Then by definition 
~b and t~ form an adjoint pair if the following two conditions are satisfied: 

t~(~ba)' < a'  Va ~ ~/ 

+(+b)' < b' v b  ~ 

Surprisingly, given any hemimorphism (b, there exists a hemimorphism + such 
that qb and ~ form an adjoint pair. More precisely we have the following result: 

Lemma. Each hemimorphism +: ~ ---) ~ has a unique adjoint 
~b*: ~ ~ ~ given by 

qb*b = A a' 
dJa < b  ' 

Proof We first show unicity. Let ~b* and ++ be adjoint to ~b and set +*b 
= a. Then ~ba' = +(qb*b)' < b' since + and O* are adjoint. Hence b < 
(qba')'. But then, since ~b + is monotone we have that ++b < ++(~ba')' < a 
= +*b, where we have used the fact that q~ and ++ are adjoint. Interchanging 
the roles of ~b* and (b +, we have that ~b* = ++. 

We now show existence. Define 

+*b = A a 
~a<b' 

We first show that ~* is a hemimorphism. It is trivial that ~b*0 = 0. Further, 
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qb*(vi b i )  = A a = A a = v i + * ( h i )  
cba<(vibi)' ~ba<b i' Vb i 

We now show that ~ and ~b* form an adjoint pair. We have that 

cb*($a)' = A x '  < a '  
+x<+a 

by considering x = a. On the other hand, 

~b(qb*b)' = qb( A a ' ) '  = ~b( V a) = V +a  < b '  
6a<b' d~a<b" d~a<b' 

where we have used the fact that + preserves the supremum, completing 
the proof. 

Example .  Let J,, be the canonical injection Ja: [0, a] ~ ~ .  We show 
that J ' J , ,  = I on [0, a] and that J a J *  = ~ on ~/, where ~b~ is the Sasaki 
projection defined by ~ = (x v a ' )  A a. The projections are then self- 
adjoint and idempotent: +a = ~* = ~b]. Indeed, for x ~ ~ and y ~ [0, a] 
we have that 

J * x  = A y r = ( V  y)r = (a A x')~ = (x v a ' )  A a 
Jay<X' v<a y~x  t 

and hence J*J~,y  = J * y  = y (exactly the orthomodularity condition) and 

J , , J * x  = (x v a ' )  A a = r 

Example .  We show that a hemimorphism u is an isomorphism if and 
only if u* = u -~. Indeed, let u be an isomorphism, then u ( u - t b ) '  = ( u u - l b ) '  
= b'  and u - l ( u a )  ' = ( u - l u a )  ' = a ' ,  so that the two conditions on an adjoint 
pair are satisfied and u* = u -~. Conversely, let u -~ = u*; then the first 
condition imposes that u-~(ua) '  < a ' ,  which means that (ua) '  < ua ' .  Further- 
more, setting b = (ua) '  for any given a, the second condition imposes that 
u ( u - l b )  ' < b ' ,  which means ( u - l b )  ' < u - l b  ', and by substitution, ( u - l ( u a ) )  ' 
< a and also a '  < u - l ( u a )  ' and so ua' < (ua) ' .  Hence ua'  = (ua) '  and so 
u is an isomorphism. 

Theorem.  The set S of  hemimorphisms of a CROC ~ into itself, equipped 
with the composition law and the adjoint defined above, forms a complete 
Baer *-semigroup. 

P r o o f  (i) It is clear that the composition law of hemimorphisms is 
associative and that the hemimorphisms a ~ 0 and a ~ a play the role of 
0 and / ,  respectively. 

(ii) The adjoint operation + ~ qb* is well defined and ~b** = + since 
the conditions on an adjoint pair are symmetric. Finally, (++)* = +*+* since 
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the two conditions are satisfied. Indeed, from O*(~ba) '  < (~ba)' we derive 
the first, do*@*(qsdoa)' < +*(+a) '  < a ' ,  and we obtain the second, Sdo(O*qs*b)' 
< b', by the same kind of reasoning. 

(iii) Finally let M C S and set ai = (doiI)' for each (hi e M. Define a 
= As ai. We show that the annihilator {$15+,. = 0 V+i E M} is identical 
to the ideal S+<,, where qb~ is the Sasaki projection d0,dr = (x v a ')  A a. 
Obviously S+~ will be contained in the annihilator of M since do~doi = 0 for 
each qbi E M. Indeed 

+a~JiX < doadoi I : qb.a[ = (a; v a ' )  A a = 0 

On the other hand, let ~ be in the annihilator of M, I~ldo i : 0 for all (~)i E M. 
We show that $ = tb+a. Now O(~bi/) = 0, so that @*I = $*(tb(~bi/))' < (qbi/)' 
= ai and so t~*x < ai for all ai. Hence (+aqs*)x = tb*x for all x. This means 
that +aO* = ~*, and so ~ : t~+a by taking the adjoint. 

3. THE CROC ASSOCIATED TO A COMPLETE BAER 
*-SEMIGROUP 

We can define a partial order relation on the set of projections of a 
complete Baer *-semigroup by setting p < q if p = pq.  This order relation 
can readily be seen to be identical to the set-theoretic inclusion 

Sp C Sq 

To each element f ~ S we will associate the projection f '  which generates 
the annihilator o f f :  

{ g l g f =  0, g ~ s} = V '  

Such a projection exists by definition and we have the following properties: 
(i) If p is a given projection, then p < p". Indeed, since in particular 

p ' p  = O, then (p ' p )*  = p p '  = 0 and so p is in the annihilator of p ' .  This 
means that there exists an f with p = fp"  = fp"p" = pp".  

(ii) I f p  and q are two projectors such that p < q, then q' < p ' .  Indeed 
by taking the adjoint of p = pq ,  we find that p = qp, which implies q ' p  = 

q ' (qp)  = (q 'q )p  = 0 and so q' < p' .  
From these two properties the map p ~ p" is a closure operation and 

p '  = p ' .  This justifies the following definition: p is a closed projector if p 
= p". Note that 0 and I are closed since 0' = I and I' = 0. 

Theorem.  The set ~ of closed projectors of a complete Baer *-semigroup 
S, equipped with the partial order defined above and the orthogonality map 
p ~ p ' ,  is a CROC. 
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Proof  (i) To show that ~ is a complete  lattice it suffices to show that 
there exists a closed projector Ai Pi, the inf imum of  any given family { Pi }, 
since there is a maximal  e lement  I. Now p < q if and only if Sp C Sq and 
so the inf imum of  a family  {Pi } must  be associated to 71i Spi. However ,  as 
each Pi is closed, this is just  the annihilator of  the family { p[ }, which is by 
definition generated by some projection p. It therefore remains  to show that 
p is necessari ly closed. Since p < p; we have that p[ < p '  and so p" < P'i' 
= pi for all p~. Hence  p" < p. On the other hand, p < p", as p is a projection. 

(ii) We now show that the map  p ~ p '  is an or thocomplementat ion.  
We have that p '  = p " ,  so that the map is well defined. The map  is trivially 
involutive and order reversing. Finally, p ^ p '  = 0, since if q < p and q < 

! t p , t h e n q  = qp and q = qp , giving q = qp = qp 'p  = O. 
(iii) The or thomodular  law states that if p < q, then (q'  v p) ^ q = p. 

In fact it suffices to show that (q ^ p ' ) '  ^ q < p, since the opposi te  inequality 
is trivial; that is, we must  show that (q A p ' ) '  a q is in the annihilator o f p ' .  
We use the fact that in general i f  pq  = qp, then pq'  = q'p, q A p = pq, and 
q A p '  = qp'.  Indeed, let pq  = qp. Then (q'p)q = (q 'q)p -- 0. Hence  q'p 
= q 'pq '  and so by taking the adjoint, q 'p  = pq' .  Further, it is s imple to 
show that if  pq = qp, then pq is a projection, in fact the projection p A q 
(von Neumann,  1950, Theorem 13.4(1), p. 53). Now pqq = pq, so that pq 
< q and in the same way pq < p. Finally, if r < p and r < q, then r = rp 
and r = rq, so that r = rpq and r < pq. Now let p < q. Then pq = qp, so 
that q A p '  = qp'. Then q(q ^ p ' )  = (q A p ' )q  and so (q ^ p ' ) '  ^ q = 
(qp') 'q .  But then it is trivial that (qp ' ) 'qp '  = 0, complet ing the proof.  

Theorem. Let ~ be a C R O C  and S the associated Baer  *-semigroup.  
Then the C R O C  associated to S is exactly ~ .  

Proof  We need to show that the closed projections of  S are exact ly of  
the form qba for  some a E N.  We use the fact that + '  = +a for a = (qb/)' 
as shown in Section 2 and so (qba)' = ~ba,. Each projection of  the form ~a 
is then closed since (+,)"  = (qb~,)' = qb~. On the other hand, let + be a closed 
projection: qb = ~b". Then + '  = qb~ for a = (+ / ) '  and so qb = qb" = (+~)' = 
qba,, complet ing the proof.  

Note that one cannot pass f rom a complete  Baer  *-semigroup to the 
associated CROC and back again in general. Indeed, let S be  any field 
considered as a complete  Baer  *-semigroup under multiplication, where we 
take the identity as the involution. Then there are only two projections, 
namely  0 a n d / ,  since a z = a implies a(a - 1) = 0. Hence  all such S have 
the same associated trivial C R O C  { 0, 1 }. Note that this C R O C  has only two 
hemimorph i sms  as one can send 1 to either 0 or 1. 
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Table I. 

+ ~  (qb~)* Self-adjoint ldempotent Closed Morphism 

00 00 Y Y Y Y 
0a 0a Y Y Y Y 
0a' a0 N N N Y 
01 aa N Y N Y 
a0 0a' N N N Y 
aa 01 N Y N N 
aa' aa' Y N N Y 
al al Y N N N 
a'O a'O Y Y Y Y 
a'a a'a Y Y Y Y 
a'a' 10 N Y N N 
a ' l  la N Y N N 
10 a'a' N Y N Y 
la a ' l  N Y N N 
la'  la' Y N N N 
11 11 Y Y N N 

4. AN EXAMPLE 

In this final section we will consider the simplest nontrivial CROC 
which has four elements, namely 0, a, a ' ,  and 1. In this case there are 16 
hemimorphisms +, as one can send a and a'  independently to an arbitrary 
element, and set + 1 = +a v +a ' .  This example, although very simple, exhibits 
much of the relevant structure of the set of hemimorphisms. For example, 
one of the hemimorphisms will be seen to be a projection which is not closed. 
Further, one can see that the adjoint of a morphism need not be a morphism. 

The 16 hemimorphisms of will be labeled + ~ ,  where o~ is the image 
of a'  and 13 is the image of a. Hence, for example, the identity hemimorphism 
is +da. Table I gives the adjoint of each hemimorphism and states whether 
a given hemimorphism is self-adjoint, idempotent, closed, or a morphism (Y, 
yes; N, no). 

Hence we see that there are four closed projections, 000, +0a, +a'0, and 
+,,~, which give back the original CROC. There is one projection which is 
not closed, namely +1 l- Finally there are two morphisms whose adjoints are 
not morphisms, namely +01 and ~bl0. 
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